

Contributing Organizations

Jet Propulsion Laboratory (JPL)/California Institute of Technology

Mission Development

Modeling and Simulation

Payload Division

Ground Operations

Power

Science

Thermal

Telecom

Mars Rover Technology

Mars Program Office

NASA

Code FT HQ

Marshall

Langley

NASDA

Tsukuba Space Center

Stanford University, CA

Old Dominion University, VA

Track Record...

Concurrent Design Teams
Supported ~ 60 Studies
Over the Last 3 Years

IIP/OSIRIS

DS (ST)-4/CIRCLE

Mars Outpost Rover

Design Maturity Improvements: <10 Time Compression: <4

Goal!

It's About...

PPT-Model

The Challenge

The biggest Challenge facing Space Development today does not lie within a specific **technology/discipline**, but rather in our ability to make these **technologies/disciplines** work efficiently together to achieve our **objectives**.

We must find entirely new ways to achieve our objectives ----- Sean O'Keefe

A Historical Perspective

Design Complexity

Low

Medium

High

Very High

Basis for Design Decisions

Experience

Experience (H) Computations (L) Experience (L) Computations (H) **Experience (VL) Computations (VH)**

Design Collaboration

Design and Analysis Approach

- Real Time
- •Working Design Session-
- Hands-On/"Touch and Feel"
- Designer and Builder the same

- Real Time
- Working Design Sessions
- Hands-On/"Touch and Feel"
- Designer and Builder Co-Located

- •Off-Line
- Office Work
- Meetings
- Design Reduced to Drawings and No.
- Designers and Builders Separated

- •Off-Line
- •Office Work
- Meetings
- Design Reduced to Drawings and No.
- Designers and Builders Separated

Back to Working Design Sessions Concurrent Design

Design Flow Improvements

The Steps...

Related

International IT Award

ISU SSP

"8 Principles of CD" (EUSEC2000)

MSFC CDE (NASA HQ)

NASDA

UoM

New Paradigms Workshop

Stanford

(NASA HQ)

Team I -> Div 38

MSMS Team Set Up

SURF (LATIS)

SURF (MEGAROVER)

John Deere

Team I -> NPDT

In A Nut Shell

Discovery Phase 1 Gulliver

DS (ST)-4/CIRCLE

Search Camera for the CNES Orbiter

- Concurrent **Design** and **Analysis** Environment
- Real-Time Analysis and Design
- Total **Systems** Approach, Multi-Disciplinary Team
- Standing Design Team
- Customer Actively Participates in the Design Sessions
- Input Parameters are Challenged in Real-Time
- Involved External Experts in the Design Sessions
- Joint Sessions with other NASA Centers
- From Concept to Engineering Drawings
- Interconnected, High-End Optical, Microwave, Mechanical/CAD, Thermal, Structural, Dynamics, Simulation, Orbital, Electronics Analysis and Design Tools, such as Code V, ZeMax, Mechanical Desktop, (Inventor), NASTRAN, Thermal Desktop, Adams, MODTool, and visualNASTRAN + (PowerTool, Telecomm, Avionics)
- Applications Utilize a Common CAD Developed Geometry
- Open Environment, import/export of STEP, NASTRAN files, etc., from/to JPL, other NASA centers, and Industry
- Technology Insertion Through Cooperation with MDL/TAP
- Analysis and Design Time Cut from Months to Weeks

IIP/OSIRIS

Loihi Deep Ocean, Volcanic Vent Probe

Oxnevad, K.I, 12 6/24/02

Approach (Design Paradigm): Integrated, High-End Analysis and Design

Approach Sizing, Configuration, and Simulation

Mars Outpost 50km Fuel Cell Rover

Lander Configuration

Deployment Sequence

Surface Configuration

Operational Scenario Simulation

Support: Mechanical (parts and assemblies), Structural, Surface Mobility/Ops Simulations, Trade Studies, Mass Summary

Approach Concept, Hardware, Science Data

Support: Mechanical (parts and assemblies), Structural, Electronics, Optics, and Engineering Drawings

Mars Surface Mobility Studies Mars Advanced Studies

Volcanology, MER Derivative

Fission Powered Polar Based Cryobot Lander Mission

Polar Layer Deposit (PLD)

Fission Powered Rover Mission

The Mars Surface Mobility Study (MSMS) Team

Simulation/Virtual Testing

Trades

Wheel Diameter Castor length Wheel Base Wheel plus rim Castor Mass Axelrod Mass Axel Mass

Tools Used
Inventor
and visualNASTRAN

Power Analysis/Simulation Tool Mars Mission Analysis Tool (MMAPT)

JPL's Mars Mission Analysis Tool (MMAPT) Included in Environment

Calculates, for a Given Location, Date, and Mission Power Profile:

- Solar Power Available
- Battery Charge and Voltage
- Solar Panels and Battery Sizes/Capacities

Plan to Introduce Avionics and Telecom Tools Later

CFD and Immersive 3D COTS Tools

Dr Tibor Balint, Assessment of Commercial Off the Shelf Computational Fluid Dynamics (COTS-CFD) Tools to Enhance the Concurrent Design Environment at NASA-JPL, JPL, May 2002

Objective

Evaluate CFD and 3D Immersive Tools For use in a Real-Time Concurrent Design Environment

Evaluation and Recommendation Completed

Beyond Engineering

Curriculum/Support B. Discipline., Performance, and Design Team Training

1. Concurrent Design Exercise

Train people from Cross-Centers to work together as a team, utilize the concurrent design approach (real time, concurrency), utilize higher-end tools to develop a specific technology/project/mission.

- •Relevant topics to be selected by Programs, Centers, or Enterprises.
- •Such training possible at the CSMAD at JPL: 5-7 days
- Process and Tools Training
- •Learn to Live in a Concurrent Design Environment
- Member and Leader Training
- •History: SURF, University of Michigan (Mars Program)

MSR Study, University of Michigan, April 1-5, 2002 Week Training and Problem Solving

Curriculum/Support B. Discipline., Performance, and Design Team Training

from experts already trained

Future Directions

- Develop An Art to Part Design Process for space vehicles (Concept to Hardware)
- Better Utilization of COTS tools in the Analysis, Design, and Simulation Areas
- Better Utilization of STEP
- Use of HPC (supercomputers, parallel computing systems)
 - CFD, Thermal, Structural)
- Utilization of Concurrent Design Teams **throughout** the **Design Process**, and throughout the **Organization**
- Define, train, and **set up of new Design Teams** (JPL, NASA centers [MSFC, LaRC, NARC,], NASDA, **industry**, and academia [Stanford and MIT])
- Set up Workshops to Bring Focus on New Design Paradigms (http://nsd2001.jpl.nasa.gov)
- Develop Working Relationships with Academic Organizations / Initiate Research
 - Caltech (SURF, on-going)
 - International Space University (ISU)
 - MIT, Stanford, University of Irvine California, Pasadena Art Center, University of Southern California (TBD)
 - University of Michigan (April 2002)
- Transfer the Concurrent Design Process to New Domains (Stanford, in Progress)

Creates Winners!

